Prior Knowledge and Preferential Structures in Gradient Descent Learning Algorithms
نویسندگان
چکیده
A family of gradient descent algorithms for learning linear functions in an online setting is considered. The family includes the classical LMS algorithm as well as new variants such as the Exponentiated Gradient (EG) algorithm due to Kivinen and Warmuth. The algorithms are based on prior distributions defined on the weight space. Techniques from differential geometry are used to develop the algorithms as gradient descent iterations with respect to the natural gradient in the Riemannian structure induced by the prior distribution. The proposed framework subsumes the notion of “link-functions”.
منابع مشابه
Intrinsic Geometry of Stochastic Gradient Descent Algorithms
We consider the intrinsic geometry of stochastic gradient descent (SG) algorithms. We show how to derive SG algorithms that fully respect an underlying geometry which can be induced by either prior knowledge in the form of a preferential structure or a generative model via the Fisher information metric. We show that using the geometrically motivated update and the “correct” loss function, the i...
متن کاملRiemannian Structure of Some New Gradient Descent Learning Algorithms
Abstract We consider some generalizations of the classical LMS learning algorithm including the Exponentiated Gradient (EG) algorithm. We show how one can develop these algorithms in terms of a prior distribution over the weight space. Our framework subsumes the notion of “link-functions”. Differential geometric methods are used to develop the algorithms as gradient descent with respect to the ...
متن کاملIdentification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملConjugate gradient neural network in prediction of clay behavior and parameters sensitivities
The use of artificial neural networks has increased in many areas of engineering. In particular, this method has been applied to many geotechnical engineering problems and demonstrated some degree of success. A review of the literature reveals that it has been used successfully in modeling soil behavior, site characterization, earth retaining structures, settlement of structures, slope stabilit...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 1 شماره
صفحات -
تاریخ انتشار 2001